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Stochastic	partial	differential	equations	(SPDE)	have	a	ubiquitous	presence	in	
computational	science	and	engineering.	Stochasticity	in	SPDEs	arises	from	
unknown/random	boundary/initial	conditions	or	field	parameters	(e.g.,	the	permeability	of	
the	ground	in	flow	through	porous	media,	the	thermal	conductivity	in	heat	transfer)	and,	
thus,	it	is	inherently	high-dimensional.	In	this	regime,	traditional	uncertainty	propagation	
techniques	fail	because	they	attempt	to	learn	the	high-dimensional	response	surfaces	(the	
curse	of	dimensionality).	The	only	viable	alternative	is	Monte	Carlo	(and	advanced	variants	
such	as	multi-level	MC).	However,	as	A.	O’Hagan	put	in	in	his	seminal	1987	paper,	“Monte	
Carlo	is	fundamentally	unsound”	because	it	fails	to	identify	and	exploit	correlations	
between	the	samples.	In	this	work,	we	develop	a	promising	alternative	to	MC	inspired	by	
recent	advances	in	probabilistic	numerics	(PN)	and	variational	inference	(VI).	Our	method	
does	not	rely	on	a	traditional	PDE	solver,	and	it	does	not	attempt	to	learn	a	response	
surface.	Instead,	we	use	PN	which	results	in	two	advantages.	First,	we	gain	control	over	the	
computational	cost,	albeit	at	the	expense	of	additional	(but	quantified)	epistemic	
uncertainty.	Second,	PN	allows	us	to	quantify	the	information	loss	between	the	true	
solution	of	the	uncertainty	propagation	problem	and	a	candidate	parameterization.	The	
latter	results	in	a	reformulation	of	the	uncertainty	propagation	problem	as	a	variational	
inference	problem,	i.e.,	as	a	stochastic	optimization	problem.	
		
 


